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Abstract  
 
The event- and physically-based runoff and erosion 
model KINEROS2 is applied to assess the impact of 
uncertainty in model parameters on simulated 
hydrographs and sediment discharge in a small 
experimental watershed. The net capillary drive 
parameter, which affects soil infiltration, is shown to 
be approximately lognormally distributed, and 
related statistics of this parameter for all soil texture 
class are computed and tabulated. The model output 
response to uncertainty in soil hydraulic and channel 
roughness parameters is evaluated by performing 
Monte Carlo (MC) simulations based on the 
parameters’ statistics obtained from the literature. 
The results show the extent to which uncertainty in 
the saturated hydraulic conductivity, net capillary 
drive, and initial relative saturation influences the 
simulated cumulative distributions of peak sediment 
discharge and sediment yield. The distribution of the 
simulated time to peak sediment discharge is 
dominated by uncertainty in the channel and plane 
Manning’s roughness coefficients. Comparison of 
the simulated median and uncertainty (± 25% and 
45% quartiles) with observed values of runoff and 
sediment discharge, for two, large and small rainfall 
events, indicate that the model performs properly 
and can be calibrated based on the range of soil 
parameters reported in the literature. 
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Introduction 
 
Sediments are cited as the third leading cause of 
stress for lakes, reservoirs, and ponds, behind 
nutrients and metals (U.S. EPA 2000). Agriculture 
land use activities are the leading source for 
sediment stress. Sediment runoff carries with it 
adsorbed toxic chemicals and nutrients that have the 
potential to cause major environmental problems to 
aquatic ecological systems and water quality 
impairment in streams and lakes (e.g., eutrophication 
and hypoxia). Distributed hydrologic 
runoff/sediment models are increasingly relied upon 
by scientists and resource managers as cost-effective 
tools for linking hillslope soil erosion and erodable 
surfaces to receiving waterbodies, thereby, allowing 
for direct assessment of the impact of land use 
practices on water quality in streams and lakes. 
 
The Kinematic Runoff and Erosion model 
KINEROS2, which is based on first principals (i.e., 
physics based), is suitable for evaluating the effect 
of events on runoff and erosion in small watersheds 
(Smith et al. 1995). In spite of its limitations, 
successful applications of this model to gaged 
watersheds has been reported in the literature 
(Osborn and Simanton 1990, Goodrich et al. 1994, 
Smith et al. 1999, Ziegler et al. 2001, Kalin et al. 
2003, Kalin and Hantush 2003). This paper presents 
an application to the event-based model KINEROS2 
to simulate runoff and sediment discharge in a 
USDA experimental watershed. The objectives are: 
1) to identify model parameters that contribute 
mostly to model output uncertainty by performing 
Monte Carlo simulations; and 2) estimating 
uncertainties in model predictions. 
 
Background Theory 
 
KINEROS2 is a distributed, event-oriented, physi-
cally based model describing the processes of 
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surface runoff and erosion from small agricultural 
and urban watersheds (Woolhiser et al. 1990). The 
watershed is represented by cascade of planes and 
channels, in which flow and sediments are routed 
from one plane to the other and, ultimately, to the 
channels. The cascades allow rainfall, infiltration, 
runoff, and erosion parameters to vary spatially. This 
model may be used to determine the effects of 
various artificial features such as urban 
developments, small detention reservoirs, or lined 
channels on flood hydrographs and sediment yield. 
 
When rainfall rate approaches the infiltration 
capacity, Hortonian overland flow begins. 
KINEROS2 assumes one-dimensional flow in each 
plane and solves the kinematic wave approximation 
of the overland and channel flow equations using 
finite differences. The flow rate is related to the 
channel flow cross-sectional area or overland flow 
depth through Chezy and Manning flow resistance 
relationships. In these relationships the channel or 
bed slope approximates the friction slope. 
 
Sediment transport equation is described by the 
following mass balance equation: 
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in which C is the volumetric sediment concentration 
[L3/L3]; A is the channel cross section area [L2]; for 
overland flow it is equal to the flow depth h for a 
unit flow width [L]; Q is the is the channel discharge 
[L3/T]; for overland flow it is equal to the discharge 
per unit width [L2/T]; e is sediment erosion rate [L2 

/T] given below; and qs is the rate of lateral sediment 
inflow for channels [L3/T/L]. In KINEROS2 
Sediment erosion/deposition rate e is composed of 
rainfall splash erosion rate gs and hydraulic erosion 
rate gh: 
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Rainfall splash erosion is given by (Woolhiser et al., 
1990): 
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in which cf is a positive constant [T]; h is flow depth 
[L]; ch is damping coefficient for splash erosion [L-

1]; r is rainfall rate [L/T]; q is excess rainfall (rainfall 
rate minus interception minus infiltration) [L/T]. The 
exponential term represents the reduction in splash 
erosion caused by increasing depth of water (Smith 
et al. 1995). In channel flow, this term is usually 
equal to zero: the accumulating water depth absorbs 
nearly all the imparted energy by the raindrops. The 
hydraulic erosion represents the rate of exchange of 
sediment between the flowing water and the soil 
over which it flows. Such interplay between shear 
force of water on the loose soil or channel bed and 
the tendency of the soil particles to settle under the 
force of gravity may be described by this first-order 
rate expression: 
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in which C* is the volumetric concentration at 
equilibrium transport capacity [L3/L3]; cg is a 
transfer rate coefficient [T-1]. For sheet flow A = h. 
This relationship assumes that if C exceeds 
equilibrium saturation, C*, deposition occurs. cg is 
usually very high for fine, noncohesive material, and 
very low for cohesive material. Several expressions 
for C* are available in the literature (e.g. Woolhiser 
et al. 1990). In our analysis, we used the formula by 
Engelund and Hansen (1967). 
 
Net Capillary Drive Parameter 
 
At the beginning of a storm and prior to ponding, the 
infiltration rate is rain limited and equal to the rate of 
precipitation. At the onset of ponding, the infiltration 
rate is equal to the infiltration capacity, provided that 
it is greater than the saturated hydraulic conductivity 
of the soil, and is given by (Parlange et al. 1982):  
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in which f(t) is the infiltration capacity [L/T]; F(t) is 
the cumulative depth of the water infiltrated into the 
soil [L]; θs is the soil porosity [L3/L3]; θi is the initial 
soil moisture content prior to the storm; α is a 
parameter generally between 0 and 1; and Ks is the 
soil saturated hydraulic conductivity [L/T]. α = 0 
corresponds to the familiar Green Ampt infiltration 
method. For most soils, α = 0.85 has been 
recommended (Parlange et al. 1982). G is the net 
capillary drive parameter: 
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ψ here is defined as the negative of the capillary 
pressure [L]. If we substitute the Brooks and Corey 
soil characteristic relation for unsaturated 
conductivity: 
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and integrate from 0 to ψb, with K(ψ) = Ks and from 
ψb to ψi, with K(ψ) given by (7)we obtain: 
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in which ψb is the bubbling pressure [L]; ψi is the 
negative of the soil initial capillary head [L]; and λ 
is the pore-size distribution index. The specific case 
of ψI = ∞ produces the commonly used expression 
for the net capillary drive function G = ψb 
[(2+3λ)/(1+3λ)].  
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Figure 1. Scaled net capillary drive vs. scaled initial 
capillary pressure for three different soil textures. 
 
This expression is used in KINEROS2, which may 
be valid after prolonged rainfall hiatus. For relatively 
wet soil conditions or short hiatus periods, the 
capillary pressure may attain a finite, but not a large 
absolute value. The effect of this on runoff and 
sediment yield hitherto is unknown. Figure 1 shows 
variation of the scaled net capillary drive G/ψb with 
scaled initial capillary pressure head ψb/ψi for soil 
textures loamy sand (λ = 0.553), silt loam (λ = 
0.234), and silt clay (λ = 0.15). Values for λ shown 
in the figure are the arithmetic means (Rawls et al. 

1982). Note that for sufficiently wet silty clay, 
arithmetic mean ψb = 76.54 cm (Rawls et al. 1982), 
G would be quite different, say, at ψb/ψi = 0.7 than 
at 0. For example, at ψi = ∞, G = 1.69×76.54 ≈ 129 
cm; at ψi = 109 cm, G = 1.28 ×76.54 ≈ 98 cm. The 
use of G value based on ψi = ∞ may lead to over 
predicting infiltration and under predicting runoff, 
consequently, sediment yield. 
 
To achieve the above two objectives, we begin by 
developing the probability density function for the G 
parameter, using the commonly used expression G = 
ψb[(2+3λ)/(1+3λ)], while bearing in mind that in 
general G may also depend on the initial capillary 
pressure ψi through Equation (8) (refer to Figure 1). 
Taking the natural logarithm of both sides of the 
above expression (G at ψi = ∞) leads to: 
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Rawls et al. (1982) indicated that ψb and λ are log-
normally distributed; they provided the arithmetic 
and geometric mean values with the corresponding 
standard deviations for both parameters, for different 
texture class. Over the reported range of values for 
λ, we have this approximation: 
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That is; G is lognormally distributed, with the mean 
of lnG (i.e., geometric mean) given by (10) and 
variance of lnG ≈ 2

ln bψσ , which is the variance of 

lnψb. λ  is the geometric mean of λ. Rawls et al. 
(1982) provide values of 2

ln bψσ and λ for different 

soil textures. Table 1 provides the arithmetic mean 
and standard deviations of G for different soil 
textures obtained from the lognormal approximation 
and by performing 10000 Monte Carlo simulations, 
using the statistics of the lognormally distributed ψb 
and λ (Rawls et al. 1982). 
 
Figure 2 plots the theoretical arithmetic mean 
(analytical) and standard deviation versus those 
obtained by MC simulations. The comparison shows 
that the lognormal approximation of G is valid over 
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different soil textures. We note that the results in 
Table 1 are based on ψi = ∞, which in light of 
Equation 8 varies with ψi. 
 
Table 1. Summary statistics of G (cm) parameter for 
various soil types. 

 
Soil 
texture 

             Arithmetic                 Geometric 
      mean                std                 (MC) 
 theo.    MC    theo.     MC    mean     std 

Sand 39 40 118 156  9.9 5.3 
Loamy sand 41 44 131 156 12.3 4.8 
Sandy loam 64 62 186 153 22.1 4.3 
Loam 105 112 475 493 17.9 6.9 
Silt loam 158 156 563 544 33.5 5.8 
Sandy clay 
loam 

 
181 

 
180 

 
864 

 
800 

 
44.1 

 
5.0 

Clay loam 129 129 364 309 42.3 4.5 
Silty clay 
loam 

 
195 

 
183 

 
601 

 
561 

 
55.0 

 
4.9 

Sandy clay 219 224 909 937 48.6 5.9 
Silty clay 209 204 666 583 59.0 4.9 
Clay 242 232 770 689 64.1 5.0 
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Figure 2. MC versus theoretical mean and std of G. 
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Figure 3. W-2 study watershed (left) and cascade 
planes, channels, and soil texture class (right). 

Monte Carlo Simulations 
 
The objective here is to identify model parameters 
that have the greatest impact on model output 
uncertainty, and compare MC results with 
observations in a small USDA experimental 
watershed (W-2). The watershed is located near 
Treynor, Iowa, and has an area of 83 acres (Figure 
3). 
 
Two rain gauges (115 and 116) measure rainfall 
intensity in the watershed. The watershed has a 
rolling topography defined by gently sloping ridges, 
steep side slopes, and alluvial valleys with incised 
channels that normally end at an active gully head 
(Kalin et al. 2003, and references therein). Slopes 
vary from 2 to 4 percent on the ridges and valleys 
and 12 to 16 percent on the side slopes. The major 
soil types are well drained and consist of silt loam 
(SL) and silty clay loam (SCL) textures that are very 
prone to erosion, requiring suitable conservation 
practices to prevent soil loss. Corn has been grown 
continuously on W-2 since 1964. Figure 3 (to the 
right) shows spatial extent of soil texture in the W-2 
watershed and the overland flow planes, marked by 
solid line boundaries, used in the simulations. To 
assess model output response to model input 
parameters’ uncertainty, we performed Monte Carlo 
simulations using KINEROS2. This is accomplished 
by generating one thousand set of independently 
distributed random values of the parameters λ, ψb, 
Ks, Si, nc, and np, φ, cg, cf, I, and D50from their 
respective probability distributions, then performing 
1000 model runs, one for each randomly generated 
parameter set. Above, nc, and np, respectively, are 
the channel and plane Manning’s roughness; Si is the 
initial soil saturation; φ is the soil porosity; I is 
interception depth; and D50 is the median particle 
size. 
 
Kalin and Hantush (2003, and references therein), 
provide the range and distributions of key soil and 
model parameters. We generated the distribution of 
G parameters using equation (9) and lognormally 
distributed λ and ψb (Rawls et al. 1982). Figure 4 
shows probability of exceeding peak sediment 
discharge rate Qs (Kg/s), sediment yield (tons), and 
time to peak sediment discharge (min) for each of 
the above randomly generated parameters λ, G, Ks. 
Si, nc, and np. For example, the curves corresponding 
to Ks are obtained by sampling its values from its 
lognormal distribution while fixing all other 
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parameters at their mean values. Plane and channel 
Manning roughness coefficients np and nc are 
assumed to be uniformly distributed. 
 

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
peak Qs (kg/s)

ex
ce

ed
an

ce
 p

ro
b.

lambda
nc
np
Ks
G
Si

0.0

0.2

0.4

0.6

0.8

1.0

75 80 85 90 95

time to peak (min)

ex
ce

ed
an

ce
 p

ro
b.

 

0.0

0.2

0.4

0.6

0.8

1.0

75 80 85 90 95

time to peak (min)

ex
ce

ed
an

ce
 p

ro
b.

 
Figure 4. Probability of exceedance of peak 
sediment discharge rate (Kg/s), sediment yield 
(tons), and time to peak sediment discharge (min) 
for different randomly distributed parameters. 
 
A sudden drop from 1 to 0 in the exceedance 
probability implies no variation of the model output 
with respect to the particular parameter uncertainty, 
whereas the more gradual the transition from 1 to 0, 
the more sensitive the model output to the 
parameter. Both the peak sediment discharge and 
sediment yield are highly sensitive to Ks, G, Si, and 
np, and to a lesser extent to λ (with ψb fixed at its 
geometric mean). Uncertainty in the channel 
Manning roughness nc has almost no impact on the 
model output (a sharp transition from 1 to 0 as 
shown in Figure 4). Parameter λ mostly affects Qs 
and to a lesser extent the sediment yield. We note 
that sensitivity with respect to λ is more pronounced 
than what is reported by Kalin and Hantush (2003), 
which is rather expected, since this parameter 
generally affects the net capillary drive G parameter. 
Although λ affects model output only through the G 
parameter, allowing ψb to vary randomly, but 
independently, with λ explains the more gradual 
transition from 1 to zero of the probability 
exceedance curve for G than that for λ, indicating a 
greater uncertainty of the model output with respect 
to the former. The Manning roughness coefficients 

np and nc have the greatest impact on exceedance 
probability of time to peak sediment discharge, with 
Ks and G having rather a moderate effect, as the last 
of Figure 4 shows. Si and λ have the least effect on 
the distribution of time to peak sediment discharge 
rate. Using MC simulations, Kalin and Hantush 
(2003) showed that for large rainfall events, peak 
sediment discharge and sediment yield is highly 
influenced by uncertainty in the hydraulic erosion 
parameter cg and much less sensitive to the rain 
splash erosion parameter cf. What was interesting, 
however, is that this mode of sensitivity is reversed 
for smaller events, where rain splash erosion 
dominates model output uncertainty. 
 
Figure 5 shows the median, 25% quartile values, 5% 
quartile values, and observations of runoff Qf and 
sediment discharge Qs for the large and small 
rainfall events shown in Figure 6. The 75% and 95% 
quartile values, which along with the 25% and 5% 
quartile values bracket the 50% and 90% confidence 
intervals, respectively, are not shown for the purpose 
of clarity. The results are obtained by performing 
MC simulations with the above model parameters, 
including cg (0.01-1 s-1) and cf (100-1000 s), 
randomly generated. The two extreme values of 
Parlange et al. infiltration parameter α are used; i.e., 
α = 0 and 1. Although α = 0.85 is recommended 
(Parlange et al., 1982), the results in Figure 5 shows 
that this parameter has almost no impact on the 
median of both runoff and sediment discharge 
except in the vicinity of peak values. For both 
events, the median significantly over estimated the 
observed Qf and Qs during the rising parts of the 
hydrograph and sedimentograph and early portions 
of the recession curve. It is remarkable that the 
median, and without calibration, simulated fairly 
well the observed values of the flow and sediment 
discharge rates during later portions of the recession; 
roughly, during the time period from 90th to the 120th 
minutes for the larger of the two events in Figure 7, 
and from 70th to 100th minute for the smaller event. 
Overall, the median of both runoff and sediment 
discharge rates are within order of magnitudes of the 
observed values for the larger event. More than 50% 
of the observations are within the median (± 25% 
quartile values). Within this confidence interval, the 
probability is 50% that flow or sediment discharge 
would be observed, provided that the model 
approximates the underlying physical processes 
reasonably well. All measurements fall within the 
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90% confidence interval, corresponding to the 
median ±45% quartile values. 
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Figure 5. MC simulations for large (top two) and 
small (bottom two) rainfall events: median and 
quartiles. 
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Figure 6. Rainfall events on 6/13/83 (left) and 
8/26/81 (right). 
 
 
Conclusions 
 
This paper applied the event-, physically-based, and 
distributed runoff/erosion model KINEROS2 to an 
experimental watershed in Iowa. The net capillary 
drive, G, parameter is a key parameter to this model, 
which affects both runoff and sediment transport. 
Statistics of the net capillary drive parameter were 
obtained and tabulated for all soil texture classes. 
These values can be used in future applications of 
KINEROS2. Monte Carlo simulations were 
conducted to assess the impact of uncertainty in 
model parameters on the variation of sediment 
discharge rate, sediment yield, and time to peak 
sediment discharge rate. Comparison with 
observations of runoff and sediment discharge rates 
of the median, median ± 25% and ± 45% quartile 
values, obtained by performing Monte Carlo 

simulations indicated that KINEROS2 performed 
well given the uncertainties in model parameters as 
reported in the literature. The model can be 
calibrated successfully without fear of producing 
artifact model parameters. 
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